Packaging Architecture for an Implanted System that Monitors Brain Activity and Applies Therapeutic Stimulation
نویسندگان
چکیده
Deep brain stimulation therapies for Parkinson’s disease utilize hardware, which from a packaging perspective, resembles that used in cardiac pacemakers. A hermetic package that contains stimulation electronics and a primary battery supply is implanted under the scalp in a recess cut into the skull. Stimulation probes, each with up to four electrodes, are inserted into the brain and connected to the electronics package via a plug and cable system. Unlike single-target devices like cochlear implants and pacemakers, achieving this neuropsychiatric therapy requires the ability to record and stimulate in multiple and distributive areas of the brain, both cortical and subcortical. By contrast, the closed loop neural stimulator being developed under the DARPA SUBNETS program utilizes probes, which each carry up to 64 electrodes that can be switched between recording and stimulation functions. This capability necessitates locating low noise amplifiers, switching and communication electronics in close proximity to each probe site. Each of these satellite electronics packages requires ten electrical connections to the hub package, which significantly increases the complexity of the interconnect system relative to current practice. The power requirements of this system preclude the use of a primary battery supply so instead, a large lithium ion battery is used with a recharging coil and electronics. The hub system is fabricated as a separate connector header, electronics package and battery pack that are interconnected by a flex circuit to allow it to conform to the skull for implanting. The standardized feedthrough substrate on the satellite, which can interface with multiple types of electrodes, along the system being reconfigurable, enables the our architecture to support new clinical research. It also allows the clinician to select satellite-electrode system based on a patient’s needs, thus providing a customized, patient-specific therapeutic system. In this paper, we will describe the various packaging components of this system and the design considerations that drove our technology choices.
منابع مشابه
Vagus nerve stimulation in the treatment of nervous system disease: a review article
The vagus nerve (VN), the longest cranial nerve and an essential part of the parasympathetic system, connects the central nervous system to respiratory, cardiovascular, immune, gastrointestinal, and endocrine systems and is involved in the maintenance of homeostasis by controlling these systems. Vagus nerve stimulation (VNS) is related to any method that would stimulate the vagal nerve via elec...
متن کاملControl of epileptic seizures by electrical low frequency deep brain stimulation: A review of probable mechanisms
Epilepsy is the most common neurological disease with no definitive method in treatment. Notably, the main way to treat and control epileptic seizures is drug therapy. However, about 20-30% of patients with epilepsy are drug resistant and require other therapeutic manners. Deep brain stimulation is a new therapeutic strategy for these patients. Conspicuously, there are no clear answers for basi...
متن کاملDoes High Frequency Transcutaneous Electrical Nerve Stimulation (TENS) Affect EEG Gamma Band Activity?
Background: Transcutaneous electrical nerve stimulation (TENS) is a noninvasive, inexpensive and safe analgesic technique used for relieving acute and chronic pain. However, despite all these advantages, there has been very little research into the therapeutic effects of TENS on brain activity. To the best of our knowledge, there is no evidence on the effect of high frequency TENS on the gamma ...
متن کاملW6: Transcranial Direct Current Stimulation Workshop
It is an Intensive 1-day course for introducing utilizing transcranial direct current stimulation (tDCS) in an applied format. This technique is a noninvasive brain stimulation that uses direct electrical currents over the head to stimulate specific parts of the brain which modulates neuronal activity. It has strong potentiality in the field of medical and neuroscientific research. Anodal stimu...
متن کاملTreatment of Neurological and Psychiatric Disorders with Deep Brain Stimulation Raising Hopes and Future Challenges
The technology of Neural Stimulation in recent years has become the focus of the research and treatment, although it has been around for many years. The potential use of stimulating the brain and nerves ranges from the spinal cord stimulation to the implantations of cochlear and bionic eyes with a large discrepancy between the clinical readiness for these various uses. Electrical high-frequency...
متن کامل